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STRENGTH OF ADHESIVE JOINTS WITH ADHEREND
YIELDING: I. ANALYTICAL MODEL

R. X. Wang
J. Cui
A. N. Sinclair
J. K. Spelt
Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario, Canada

A sandwich element can be isolated in all two-dimensional adhesive joints, thereby
simplifying the analysis of strain and stress. An adhesive sandwich model has
been developed that accommodates arbitrary loading, a bilinear adherend stress-
strain response, and any form of nonlinear adhesive behavior. The model accounts
for both the bending deformation and the shear deformation of the adherends.
Stress and strain distributions in the adhesive were obtained by solving a system
of six differential equations using a finite-difference method. For a sample adhe-
sive sandwich, the adhesive strains and stresses from the new model were com-
pared with those of other models. Finally, the model was coupled with an
analytical solution for the detached section of an adhesive joint in peel. The stress
and strain distributions in the adhesive and the root curvature of the peel
adherend were then compared with finite element results. An accompanying article
in this issue uses the model with experimental peel data to investigate the suit-
ability of various adhesive failure criteria.
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INTRODUCTION

The wider use of adhesives in structural applications requires the
development of procedures for the prediction of joint strength. In cases
where the adherends remain elastic up to joint failure, the ultimate
fracture loads for many joint geometries can be predicted using a
critical energy release rate that is a function of the mode ratio of
loading [1, 2]. Similar capabilities do not exist; for adhesive joints in
which large-scale adherend yielding occurs prior to adhesive failure
as, for example, when bonded metal sheets in automotive structures
collapse under impact. This situation is complicated by the varying
degree of constraint imposed on the adhesive failure zone (crack tip if
using a fracture model) by the yielding adherends. For example, a
relatively high degree of stress concentration will exist in the adhesive
at the end of the bonded region if the adherend properties (thickness,
yield strength), loading direction and magnitude, and adhesive
strength combine to produce a small radius of curvature. At the other
extreme, the elastic arms of a double cantilever beam specimen, for
example, will create a relatively large three-dimensional loading zone
in the adhesive, thereby increasing the volume of material involved in
the yielding and fracture process. Experience has shown that, with
elastic adherends, the size and nature of the loading zone is ade-
quately correlated with the mode ratio alone [3]. This may not be the
case with adherends that undergo extensive yielding, and it may be
necessary to have an additional parameter characterizing the degree
of stress concentration in the adhesive layer.

Crocombe and Bigwood [4] developed an innovative ‘‘adhesive
sandwich’’ model that accommodates the nonlinear stress-strain
response of both the adhesive and the adherends subject to arbitrary
loads imposed on the ends of the sandwich element. Such a generic
sandwich model can be incorporated into a wide variety of common
adhesive joint geometries. The adhesive was assumed to behave as a
series of nonlinear shear and tensile springs coupled by the von Mises
yielding criterion. This model resulted in a set of six nonlinear first-
order differential equations that were solved numerically using a
finite-difference method. The sandwich model produced reasonable
agreement with a finite element model.

In the present work, the adhesive sandwich model of Crocombe and
Bigwood [4] was first extended to include shear deformation of the
adherends. The model was then coupled to an existing analytical
model for the detached adherend in a peel specimen, thereby allowing
for the investigation of two failure criteria using peel test data
described in the accompanying article in this volume [5]. The ultimate
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objective is to develop a means of predicting adhesive failure in arbi-
trary joints subject to large-scale adherend yielding. In the general
case, the reactions acting on the adhesive sandwich might be supplied
by a finite element or other structural model, rather than by the
specialized model of a detached peel strip used here.

SANDWICH MODEL

For any two-dimensional adhesive joint geometry, an adhesive sand-
wich element can be isolated as shown in Figure 1. Both adherends are
treated as beams subject to arbitrary bending (M), tensile (T), or shear
(V ) loads. Figure 2 shows the free-body diagrams for the adherends
over a differential length dx of the sandwich. The development of the
sandwich model is presented below in two sections: (1) the analysis of
the nonlinear adhesive behavior and (2) adherend modeling. Only the
modifications that were made to the original Crocombe and Bigwood
model [4] are discussed in detail. These include the following:

1. Adherend shear deformation is considered. This contributes to
earlier yielding and larger adherend curvatures than predicted by
the original model [4].

2. The present model was used to investigate several stress states in
the adhesive:

a. plane strain (ez¼ 0) and plane stress (sz¼ 0) both with no
tensile stress in the x direction (sx¼ 0)

b. uniaxial strain (ex¼ ez¼ 0), thereby generating a finite sx.
Only the plane strain condition (ez¼ 0) was studied in
Crocombe and Bigwood [4], and it was assumed that sx¼ 0.

FIGURE 1 A general adhesive sandwich element subject to arbitrary end
loads as found in many typical joints.
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Governing Equations

Under the assumption of a uniaxial strain in the adhesive layer
(ex¼ ez¼ 0) and plane strain adherends (ez¼ 0), and following an
approach similar to Crocombe and Bigwood [4], the equations gov-
erning the equilibrium of the adherends (Figure 2) are formulated as:

dT1x

dx
¼ Esg

2ð1 þ upÞ
ð1aÞ

dV1x

dx
¼ Ese

ðup � 1 þ 2u2
pÞ

up � 1
� �

ð1bÞ

dM1x

dx
¼ V1x �

ðh1 þ tÞEs

4ð1 þ upÞ
g ð1cÞ

dg
dx

¼ KT;M
1x �h1=2 þ e1ð Þ � KT;M

2x h2=2 þ e2ð Þ
n o

=t ð1dÞ

de
dx

¼ C ð1eÞ

FIGURE 2 A free-body diagram of the adherends over a differential length dx
of an adhesive sandwich.
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dC

dx
¼ K2x � K1xð Þ=t ð1fÞ

where T1x, V1x, M1x, g, e, and C are six unknowns; K1x and K2x are the
total curvatures for adherend 1 and adherend 2, respectively, while
KT;M

1x and KT;M
2x are curvatures due to T and M loads only. Es is

the secant modulus of the nonlinear adhesive, defined later in
Equation (6); e1 and e2 are the offsets of the neutral axis due to tensile
force in adherends 1 and 2, respectively; and up is the plastic Poisson
ratio of the adhesive. The curvature terms are implicit functions of the
respective adherend local reactions (T, V, M), i.e.,

K1x ¼ f1 T1x; V1x; M1xð Þ; KT;M
1x ¼ f2 T1x; M1xð Þ;

K2x ¼ f3 T1x; V1x; M1xð Þ;KT;M
2x ¼ f4 T1x; M1xð Þ:

The local loads (T2x, V2x, M2x) for adherend 2 can always be derived
by an overall force balance:

T2x ¼ T11 þ T21 � T1x ð2Þ

V2x ¼ V11 þ V21 � V1x ð3Þ

M2x ¼ M11 þ M21ð Þ�M1x þ V11 þ V21ð Þx þ T11 � T1xð Þh0 ð4Þ

where h0 is defined as

h0 ¼ 2t þ h1 þ h2

2
ð5Þ

Therefore, K2x and KT;M
2x can always be interpreted as a function of T1x,

V1x, and M1x.

Adhesive Model

The adhesive layer is modeled as a set of nonlinear shear and tension
springs coupled by the von Mises yielding criterion. The uniaxial
tensile stress-strain curve for the adhesive can be defined using either
an equation or a series of data interpolated using a spline fit, as shown
in Figure 3. Adhesive plasticity is treated using an equivalent
instantaneous modulus, the secant modulus, as shown in Figure 3,
and is defined as

Es ¼
se

ee
ð6Þ
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where se is the adhesive von Mises stress which can be calculated for
the uniaxial strain adhesive model (ez ¼ ex ¼ 0) in terms of the com-
ponent stresses (sy and txy) as

se ¼ 1 � up

1 � up

� �2

s2
y þ 3t2

xy

( )0:5

ð7Þ

The corresponding von Mises strain, ee, can be found by combining
Equations (6) and (7) using the secant modulus formulation of Hooke’s

law to give sy ¼ 1�up

1�up�2u2
p
Esey and txy ¼ Es

2ð1þupÞ gxy:

ee ¼
1 � 2up

� �2

up � 1 þ 2u2
p

	 
2
e2 þ 0:75g2

1 þ up

� �2

8><
>:

9>=
>;

0:5

ð8Þ

where the plastic Poisson ratio up for the adhesive is

up ¼ 1

2
1 � Es

E
1 � 2uð Þ

� �
ð9Þ

with u being the elastic adhesive Poisson ratio. Although up should
depend on the state of stress, a constant value of 0.47 was used for the
adhesive. The work of Crocombe and Bigwood [4] showed this to be an
acceptable approximation.

FIGURE 3 Spline interpolation of discrete uniaxial stress and strain data for
adhesive and illustration of secant modulus.
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Adherend Model

The adherends of the sandwich element (Figure 2) are modeled as
beams having a bilinear stress-strain response. Since the analysis can
be applied to both the upper and lower adherends, the subscripts 1 and
2 are omitted in this section for clarity.

The von Mises yield response of the bilinear adherend, as illu-
strated in Figure 4, is described by:

se ¼
Eelee ee � eyp

syp þ Epl ee � eyp

� �
ee > eyp

�
ð10Þ

where syp ¼ Eeleyp and Epl ¼ aEel, with a a constant.
The analysis of the tensile stress distribution ðsxÞ across the

thickness of the adherends due to local bending moment (M) and axial
force (T) is facilitated using the concept of longitudinal stress and
strain [4]. Figure 4 shows the von Mises se � ee curve, which is
equivalent to the uniaxial stress-strain curve for the adherends. The
‘‘Longitudinal #1’’ curve is a calculated x-direction longitudinal sx � ex

response of the adherends under plane strain conditions (ez ¼ 0) based
on the given se � ee curve. In this case, the adherend shear stress txy

due to V is neglected. This is the case Crocombe and Bigwood used in
their analysis [4] by applying the following equations:

sx ¼ Eel
ex

1 � u2
p

if ex � eyp ð11Þ

FIGURE 4 Bilinear plane strain approximation of von Mises and longitudinal
and stress-strain response for the adherends.
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sx ¼ syp þ Epl
ex � eyp

1 � u2
p

if ex > eyp ð12Þ

The present model takes the shear stress txy into account, therefore
the longitudinal sx � ex response is transformed into the ‘‘Longitudinal
#2’’ response in Figure 4. This can be further classified as bilinear and
nonlinear under two situations, depending on the value of the average
shear stress t across the thickness of the adherends: t < tcritical and
when t � tcritical, where tcritical ¼ sypffiffi

3
p :

If t < tcritical, then for both the linear elastic (O�C) and plastic
(C�C0) stages, the longitudinal adherend stress sx can be calculated
by [6]

sx ¼
E2

el

1�upþu2
pð Þ

1�u2
pð Þ2 e2

x þ 3
4

1�upð Þ2

1�u2
pð Þ2 g2

� �
� 3t2

� �1
2

1 � up þ u2
p

	 
1
2

if ex � eyp; x ð13aÞ

sx ¼

syp þEpl
1�upþu2

pð Þ
1�u2

pð Þ2 e2
x þ 3

4

1�upð Þ2

1�u2
pð Þ2 g2

� �1
2

�Epleyp

" #2

�3t2

8<
:

9=
;

1
2

1� up þ u2
p

	 
1
2

if ex > eyp;x

ð13bÞ

where eyp;x is the yield strain corresponding to the bilinear long-
itudinal sx � ex curve (Longitudinal 2, t < tcritical, Figure 4). The cor-
responding adherend shear strain is given by

g ¼
2t 1þueð Þ

Eel
t � tcritical

2tcritical 1þueð Þ
Eel

þ 2 t�tcriticalð Þ 1þupð Þ
Epl

t > tcritical

8<
: ð14Þ

where ue and up are the adherend elastic and plastic Poisson ratio,
respectively.

The differentiation of sx with respect to ex gives the corresponding
longitudinal Young’s modulus for both the linear elastic stage, i.e.,
Equation (15), and for the nonlinear plastic stage, which can be
approximated as Equation (16):

Eel;x ¼ Eel

1 � u2
p

	 
 if ex � eyp;x ð15Þ
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Epl;x 
 Epl

1 � u2
p

	 
 if ex > eyp;x ð16Þ

where the longitudinal yielding strain eyp;x is given by

eyp;x ¼
1 � u2

p

	 

1 � up þ u2

p

	 
1
2

e2
yp � 3

4

1

1 þ up

� �2
g2

" #1
2

ð17Þ

If t � tcritical, then it effectively means eyp;x ¼ 0, and any loading of
either tensile (T) or bending (M) will lead the adherend immediately
into the nonlinear yielding stage, shown as the curve ‘‘O-D’’ in Figure
4. In this case, the corresponding longitudinal Young’s modulus is
obtained from Equation (13b) using the secant modulus approach of
Equation (6) as

Epl;x ¼ sx

ex
¼

syp þ Epl
1�upþu2

pð Þ
1�u2

pð Þ2 e2
x þ 3

4

1�upð Þ2

1�u2
pð Þ2 g2

� �1
2

�Epleyp

" #2

� 3t2

8<
:

9=
;

1
2

ex 1 � up þ u2
p

	 
1
2

ð18Þ

Corresponding to this case, a special adherend load category (named #5)
will be discussed in a later section, to be used in addition to the four
categories presented in Crocombe and Bigwood [4].

Bilinear Adherend Beam Analysis

This section considers the calculation of the adherend curvatures
K1x;K

T;M
1x ;K2x, and KT;M

2x , and the neutral axis offsets e1 and e2 using
plate bending theory. For clarity, the x subscript and the adherend
designations 1 and 2 are omitted in this section. Before moving on to
the analysis, the total adherend curvature and its components due to
bending and shear force will be addressed.

1. Total Adherend Curvature, K
The total curvature is obtained as

K ¼ KT;M þ KV ð19Þ
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where KT;M is the adherend curvature due to the bending moment (M)
and the tensile force (T) acting at the section, while KV is the curva-
ture due to the shear force (V) acting at the section.

2. Bending Curvature K T ;M

The determination of tensile stress (sx) requires the application of
the bilinear longitudinal sx � ex response derived above. The longi-
tudinal properties such as elastic Young’s modulus Eel;x, plastic
Young’s modulus Eyp;x, yielding strain eyp;x, and yielding stress syp;x

were already defined in Equations (15) to (18). The longitudinal strain
ex across the thickness of the adherends is assumed to vary linearly
with the distance from the neutral axis. At a general distance y from
the neutral axis, the longitudinal tensile stress sx is calculated by

sx ¼ syp;x þ Epl;xKM;T y � rð Þ ¼ syp;x þ asyp;x y � rð Þ=r y � r
syp; xy=r y � r

�
ð20Þ

where a is defined as in Equation (10) as the ratio of the adherend
plastic and elastic moduli ðEpl/EelÞ, and r is the ‘‘elastic semidepth,’’
defined below in Equation (22) as the distance from the neutral axis to
the point where yield would begin (this point may be outside the
beam).

Five categories of adherend stress (sx) distribution may occur
according to the values of the moment M, tensile force T, and shear
force V. Categories 1 to 4 are similar to those in the Crocombe and
Bigwood analysis [4] except that the calculation of longitudinal stress-
strain response properties (i.e., syp;x and eyp;x) is different due to the
inclusion of shear stress, as mentioned above. For each category, the sx

distribution is determined using the simultaneous solution of the fol-
lowing equilibrium equations for the local moment (M) and tension (T)
per unit adherend width:

T ¼
Z h=2

�h=2

sxdy and M ¼
Z h=2

�h=2

ysx dy ð21Þ

At a distance r (elastic semidepth) from the neutral axis, the strain ex

reaches the yielding strain eyp;x, and the value of r can be related to the
adherend bending curvature KT;M as

KT;M ¼ eyp;x

r
¼ 1

r

syp;x

Eel;x
ð22Þ

The actual neutral axis under this general loading that includes tension
is located a distance e from the neutral axis due to bending alone.

32 R. X. Wang et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
1
8
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



However, for category #5, the following equations are used to cal-
culate KT;M and e directly:

e ¼ Th2

12M
; KT;M ¼ syp;x

rEpl;x
; r ¼ syp;xh

3

12M
ð23Þ

The method of determining which category will apply during the
problem solution is similar to that in Crocombe and Bigwood [4].
Category #5 applies only when t � tcritical, where t is the average shear
stress across the adherend.

3. Shear Curvature K V

The calculation of the shear curvature KV due to the shear force
acting at the section requires a known shear stress distribution across
the section. An assumption is made here to simplify the analysis [7]:

KV ¼ d2uV

d2x
¼ dgneutral

dx
¼ 1

G

dtneutral

dx
ð24Þ

where uV is the vertical deflection of the adherend due to shear force,
and G, gneutral, and tneutral are the shear modulus, shear strain, and
shear stress, respectively, at the centroid of the adherend.

The derivation of tneutral is described in the Appendix. It is given by

tneutral ¼
�AV þ 1

2 ta M � Mcritical

�BV þ 1
2 ta M > Mcritical

(
ð25Þ

where A ¼ 3
2bh ; B ¼ 12 1�að Þþ3ah2=r2½ �

16r 1�að Þþ2ah3=r2 , and ta is the shear stress applied to

the adherend by the adhesive. Differentiation with respect to x gives

dtneutral

dx
¼ �Asþ 1

2
dta

dx M � Mcritical

�Bsþ 1
2

dta

dx M > Mcritical

(
ð26Þ

where dta

dx is given by

dta

dx
¼ Gads

S

dg
dx

¼ ES

2t 1 þ up

� � du1

dx
� du2

dx

� �

¼ ES

2t 1 þ up

� � �KT;M
1x

h1

2
þ

T1x 1 � u2
1p

	 

Eadh1

S h1

2
4

3
5

8<
:

� KT;M
2x

h2

2
þ

T2x 1 � u2
2p

	 

Eadh2

S h2

2
4

3
5
9=
; ð27Þ
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where Es is the adhesive secant modulus (Equation (6)); Eadh1
s and

Eadh2
s are the local secant Young’s moduli of adherend 1 and 2,

respectively, at the interfaces with the adhesive; u1p and u2p are the
plastic Poisson ratio of adherend 1 and 2; and Gads

s is the secant shear
modulus of the adhesive, conceptually equivalent to Es.

Substituting into Equation (26), the shear curvature of each
adherend is given by

KV ¼ 2ES

Eadh
S

1

4t
�KT;M

1x

h1

2
þ

T1x 1 � u2
1p

	 

Eadh1

S h1

2
4

3
5

8<
:

2
4

� KT;M
2x

h2

2
þ

T2x 1 � u2
2p

	 

Eadh2

S h2

2
4

3
5
9=
;� D

e
1 � up

� �
3
5 ð28Þ

where D ¼ A if M < Mcritical, and D ¼ B if M � Mcritical.

Numerical Solution

Solving this system of six nonlinear first-order differential
equations, Equations (1a�f) for the vector of unknowns Y ¼
T1x;V1x;M1x; g; e;C½ �T, is complicated by the associated auxiliary
equations that require the solution of a set of nonlinear equations to
find K1x;K

T;M
1x ;K2x;K

T;M
2x ; e1, and e2 under different categories. At each

end of the sandwich, x ¼ 0, L, six boundary values are specified for the
elements of Y. After some unsuccessful attempts to employ a ‘‘shooting
method’’ of solution in which the boundary value problem is treated as
an initial value problem, a finite difference method [8, 9] was
employed, using a solver (DBVFPD; Double (Precision) Boundary
Value Problem Finite Difference) from the IMSL (International
Mathematical and Statistical Library) Fortran library [10]. This is
an adaptive finite difference program for first-order, nonlinear,
ordinary boundary problems similar to the one used in Crocombe and
Bigwood [4].

Implementation of DBVFPD Solver

The DBVFPD solver requires the introduction of a linearizing para-
meter eps to be embedded into the original differential equations such
that when eps ¼ 0, they become linear. Gradually raising the value of
eps to 1 increases the degree of nonlinearity until the actual problem is
obtained. In Equations (1a�f ), parameters such as Es;K1x;K

T;M
1x ;

K2x;K
T;M
2x ; e1, and e2 are all nonlinear factors with implicit and
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complicated expressions. When eps ¼ 0 at the beginning of the solu-
tion procedure, they take on values corresponding to the purely elastic
case.

In the finite difference technique, a mesh is defined over the region
of interest as a series of points on which the set of differential equa-
tions are discretized and transformed into linear algebraic equations.
The IMSL routine DBVFPD executes this meshing, the formulation of
discrete equations, convergence testing, system solution, and sub-
sequent mesh refinement.

To begin the calculation, the geometry of the joint and the material
properties of both adhesive and adherends are input. The initial mesh
grids and guess values for unknown variables are provided in com-
pliance with the prescribed boundary conditions. Given the robustness
of the DBVFPD solver in these types of problems, the initial guess
values can be very approximate. For example, linear interpolation
between the boundary values can be used for the guess values at all
initial mesh grid points. The boundary conditions can be different from
one case to another. They can be prescribed loads acting anywhere on
the adherends of the joint, or they can be prescribed strains in the
adhesive layer at the ends or somewhere along the overlap of the
sandwich.

Comparisons with Other Models

The present sandwich model was compared with the model of
Crocombe and Bigwood [4] and a finite element model [11] using the
sandwich geometry and properties specified in Crocombe and Bigwood
[4] and reproduced in Figure 5. Note that this sandwich is subject only
to bending loads and is, therefore, not representative of the situation
in a peel specimen. The adherend was assumed to have a bilinear
stress-strain response, and the adhesive was described using the
Prager formula:

se ¼ A tan h Eel � Epl

� �
ee=A

� �
þ Eplee ð29Þ

where A is the stress asymptote of the curve, Eel is the elastic Young’s
modulus, and Epl is the plastic Young’s modulus. The two-dimensional
finite element model (ANSYS v. 5.7) used four layers of 4-node quad-
rilateral elements, 0.1 mm wide, through the adhesive thickness and
five layers through each adherend.

Figure 6 shows the adhesive strains for these three models as a
function of the distance from the left end of the sandwich of Figure 5.
The peel strain here is the tensile strain normal to the adherend
bonded surfaces, and all models assumed plane strain ðez ¼ 0Þ. As the
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FIGURE 5 Adhesive sandwich element used to evaluate model. Adherend
parameters: Eel ¼ 70 Gpa; Epl ¼ 2 Gpa; syp ¼ 300 Mpa; Adhesive parameters:
Eel ¼ 5:74 Gpa; Epl ¼ 408 Mpa; A ¼ 63 Mpa.

FIGURE 6 Adhesive peel and shear strains in sandwich of Figure 5 for
present model, model of Crocombe and Bigwood [4] and FE model.
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strain distributions are symmetric about the center of the joint, they
are shown for only half of the joint overlap. The finite element data are
taken from the nodes at the center line of the adhesive layer. It is seen
that the overall trends of both the present model (ez ¼ 0) and the
original model [4] agree with the finite element result, except near the
end of the joint where the finite element strains reach an extremum
close to the free edge of the adhesive layer. Both the present modified
model and the original model [4] fail to show this local maximum. As
recognized in Crocombe and Bigwood [4], this is due to the finite ele-
ment model capturing three effects that the analytical models miss:
the large strain variation across the adhesive layer due to the square
edge, the absence of shear stress at the free surface, and the finite
adhesive longitudinal stress (sx). Since sx in the adhesive is tensile
near the end of the overlap, by neglecting it both analytical models
tend to predict a premature yielding of the adhesive, thereby con-
tributing to a generally lower peel strain in this region. Comparing the
present model with that of Crocombe and Bigwood [4], it is seen that
the inclusion of shear deformation in the adherends has the effect of
increasing curvature and hence the absolute magnitudes of both the
peel and shear strains. This effect would be larger if the sandwich
loading (Figure 5) included shear forces as in the case of a peel
specimen.

The adhesive peel and shear stress distributions in the sandwich
of Figure 5 are shown in Figure 7a. As expected from Figure 6, the
inclusion of adherend shear deformation increases the absolute
magnitude of the stresses near the end of the sandwich relative
to the original model [4]. The finite element model predicts a rela-
tively large maximum peel stress 0.2 mm from the end of the
sandwich, but agrees well with the analytical models at the free
surface.

The above two analytical models both assumed that sx ¼ 0 in the
adhesive layer. The consequences of this were examined in a simplified
way by altering the present model so that ex ¼ ez ¼ 0 in the adhesive
while retaining plane strain adherends (only ez ¼ 0), thereby generat-
ing a finite adhesive sx (the uniaxial strain model). Figure 7b shows the
von Mises stress distribution in the sandwich of Figure 5 for the pre-
sent model and that of Crocombe and Bigwood [4] under the plane
strain ðez ¼ 0Þ assumption, the uniaxial strain assumption for the
adhesive ðex ¼ ez ¼ 0Þ, and the finite element model which assumed
ez ¼ 0 for both the adhesive and the adherends. It is seen that, in the
region close to the edge, the two plane strain models gave results closer
to the FEM than the uniaxial strain model, which predicted a flatter
von Mises stress distribution. However, Figure 7c shows that the von
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FIGURE 7 Adhesive stress and strain as a function of distance from the left
end of the sandwich of Figure 5 for the present model, the model of Crocombe
and Bigwood [4] and the finite element model. Plane strain ðez ¼ 0Þ assumed in
adhesive and adherends. (a) Peel and shear stress; (b) von Mises stress, which
also shows curve for present model under uniaxial strain condition in
adhesive ðex ¼ ez ¼ 0Þ; (c) von Mises strain. (Continued)
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Mises strain of the FEM and the uniaxial strain model are almost
identical at the free edge of the sandwich where failure will occur first.

PEEL MODEL

The modified adhesive sandwich model described above was coupled to
an existing model of the detached part of a flexible-to-rigid peel joint as
illustrated in Figure 8. This was done to permit the use of experi-
mental peel data in developing a suitable failure criterion for adhesive
joints with adherends that undergo extensive plastic deformation.
Following Moidu et al. [12], the detached strip to the left of the peel
root was treated as an elasto-plastic slender beam in pure bending,
and its curvature and rotation at the ‘‘root’’ (point of connection with
the adhesive) were matched to those of the sandwich. From [12], the
root curvature kB, root rotation angle f, and peel force F are related as

F

bMoKe
1 � cos y� fð Þ½ � ¼ k2

B

3
for 1 < kB � 1 þ 1

1 � a

� �
ð30aÞ

F

bMoKe
1� cos y�fð Þ½ � ¼ 1

3
1� 1�að Þ3
h i

k2
B þ 2 1�að Þ2�a 1�að Þ 2�að Þ

h i
kB

þ 2�að Þ2

3kB 1�að Þ 6 1�að Þ� 4�a2
� �" #

þ 2�að Þ2 1það Þ

�4 1�að Þ 2�að Þ for kB � 1þ 1

1�a

� �
ð30bÞ

FIGURE 7 (Continued.)
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where Mo is the collapse moment, Ke is the elastic limit curvature, and
a is the ratio of the bilinear adherend plastic modulus to the elastic
modulus.

For flexible-to-rigid peel specimens (Figure 8)—assuming L is
sufficiently large—the right-hand side boundary forces (T12;V12,
M12;T22;V22;M22) in Figure 8 are all zero. The boundary forces on the
left hand side are equal but in opposite directions for the top and
bottom adherends:

T21 ¼ �T11; V21 ¼ �T11; M21 ¼ �M11 ð31Þ

A simple force balance on the detached peel strip gives:

T11 ¼ F cosðyÞ ð32aÞ

V11 ¼ �F sinðyÞ ð32bÞ

The bending moment M11 is related to the maximum curvature kB at
the root as follows [13]:

M11 ¼ �mBMo ¼ �Mo
2

3
kB if kB < 1 ð33aÞ

M11 ¼ �mBMo ¼ �Mo 1 � að Þ 1 � 1

3k2
B

� �
þ 2

3
akB

� �
if kB � 1 ð33bÞ

Equations (30) to (33) imply that an additional implicit relationship
can be established between kB and f, expressed as:

f kB;fð Þ ¼ 0 ð34Þ

Values of kB and f can be obtained by jointly solving Equations (30)
and (34) numerically using the Newton-Raphson method. The flow
chart for the overall solution procedure is shown in Figure 9.

Comparisons with Finite Element Model

In order to verify the new peel analysis, comparisons were made with
a finite element model (ANSYS v. 5.7) [11]. The peel configuration used
was a 1 mm thick AA5754-O aluminum strip (bilinear stress-strain
properties: Eel ¼ 71 Gpa; Epl ¼ 483 Mpa; sy ¼ 100 Mpa) bonded to a
rigid base by an adhesive with the same properties as in the sandwich
model of Figure 5. The elastic Poisson ratio for both adhesive and
adherends was 0.37, while the plastic Poisson ratio for the adherends
was 0.5. The plastic Poisson ratio for the adhesive was 0.5 in the finite
element model and 0.47 in the analytical model. The peel force
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F ¼ 14:7 N/mm and the peel angle y ¼ 90. Figures 10a�c show the
adhesive tensile, shear, and von Mises strain distributions as a func-
tion of distance from the peel root for the finite element model, the
present model under plane strain conditions ðez ¼ 0Þ, and the present
model under uniaxial strain ðex ¼ ez ¼ 0Þ. The results for the latter

FIGURE 9 Flow chart of iterative solution procedure used in peel model.
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FIGURE 10 Adhesive strain as a function of distance from the peel root for
plane strain ðez ¼ 0Þ finite element model and present analytical model under
2 conditions: plane strain ðez ¼ 0Þ, and uniaxial strain ðex ¼ ez ¼ 0Þ. Value of
plastic Poisson ratio shown in brackets. Rigid-flexible peel geometry with
adhesive properties as in Figure 5, 1 mm thick AA5754-O adherend peeled
at 90. (a) Peel (tensile) strain; (b) shear strain; (c) von Mises strain, finite
element results shown for interface and midplane nodes. (Continued)
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model are also shown for an additional adhesive plastic Poisson ratio
ðup ¼ 0:4Þ. As with the earlier comparisons of the sandwich model
(Figures 6 and 7), the discrepancy between the analytical models and
the finite element model decreases with the distance from the peel
root, becoming very small beyond 1 mm. The uniaxial strain model
ðup ¼ 0:47Þ shows the best overall agreement with the finite element
model because of its approximation of sx in the adhesive. It is seen that
the peel strain predicted by this model is particularly sensitive to the
choice of up. As seen in Figures 6 and 7, the analytical model predicts
that the adhesive strains are maximum at the root, while the finite
element analysis shows extrema occurring very close to the root.
Figure 10c shows the FEM von Mises strains at both the interface and
midpoint nodes, illustrating the variation within the adhesive as a
function of y.

Figures 11a�c show the adhesive tensile, shear, and von Mises
strains, respectively, predicted by the model of Crocombe and Bigwood
[4] and the present model with a plane strain ðez ¼ 0Þ adhesive layer
and the same peel case used in Figures 10a�c. The inclusion of shear
deformation in the present model increases each type of strain sig-
nificantly and leads to greater curvature at the peel root.

The internal consistency of the plane strain sandwich model was
checked by comparing the work done by an external bending moment
per unit width of 380 Nmm=mm applied to both ends of the sandwich
(shown in Figure 5) with the total strain energy in the adherends and

FIGURE 10 (Continued.)
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FIGURE 11 Adhesive strains predicted by model of Crocombe and Bigwood
[4] and the present model with a plane strain adhesive and the rigid-flexible
90 peel case used in Figure 10. (a) Tensile (peel) strain; (b) shear strain; (c) von
Mises strain.
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adhesive. The moments caused a predicted rotation of 5:7 so that the
total work done was 42.2 J=mm. The resulting strain energy stored in
the adherends and adhesive was 32.4 J=mm and 8.4 J=mm, respec-
tively, giving a total of 40.8 J=mm. Thus, the external work done
matched the stored energy to within approximately 3%.

The practical utility of the present analytical model cannot be
assessed solely by comparisons with finite element results. Although
they give assurance that the analytical predictions of stress and strain
are reasonable, the ultimate test is to obtain consistent correlations
with experimental data using a single failure criterion. Only this test
can determine whether the analytical model is sufficiently accurate to
be of engineering use. This question is pursued in the accompanying
article in this volume [5].

CONCLUSIONS

An existing analytical adhesive sandwich model [4] has been extended
to include the effect of shear deformation in the adherends. A uniaxial
strain condition ðex ¼ ez ¼ 0Þ was examined to provide a simple
approximation of the longitudinal stress ðsxÞ in the adhesive layer.
This sandwich model can be a generic element in a wide variety of
adhesive joint configurations. For example, in the present case, it has
been coupled to an existing model for the detached strip of a peel
specimen [12] to create a new model for the rigid-flexible peel geo-
metry. This enabled the experimental verification of the sandwich
model using peel data [5]. Both the sandwich and peel models pre-
dicted adhesive stress and strain distributions that captured the
overall trends of the finite element model, but missed some of the
localized phenomena near the free edge. In the accompanying article
[5], experimental peel data are used with the present model to assess
the applicability of a critical von Mises strain and a critical fracture
energy failure criterion.

By allowing for any form of adherend and adhesive plastic behavior,
the present peel model is less restrictive than earlier models, such as
[12�15], that accommodated adherend yielding but assumed only an
elastic adhesive response.
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APPENDIX: SHEAR STRESS AT THE NEUTRAL AXIS
AND ITS DISTRIBUTION ACROSS THE ADHEREND

The analysis of deformation due to shear under a general loading can
be decomposed into two simple cases, as shown in Figure A1. Super-
position of Case 1 and Case 2 gives the total shear stress at the neutral
axis, as expressed by Equation (25) used above.

Case 1

If M � Mcritical such that the surfaces of the adherend remain elastic,
then shear stress txy can be calculated based on the parabolic dis-
tribution as

txy ¼ � V

2I

h

2

� �2

�y2

" #
if M � Mcritical ðA1Þ

where I is the moment of inertia of the cross-section, and Mcritical can
be calculated as

Mcritical ¼ syp;xh2=6 ðA2Þ
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At the neutral axis

tneutral ¼ tmax ¼ � 3

2

V

bh
¼ �AV ðA3Þ

where A ¼ 3
2bh :

If M > Mcritical, which means the surfaces have yielded, then the
calculation of the txy distribution is rather complicated. However, as
with the elastic case, txy is maximum at the neutral axis and is given
by

tneutral ¼ tmax ¼ �
V 12ð1 � aÞ þ 3ah2=r2
" #
16ð1 � aÞ þ 2ah3=r3

¼ �BV ðA4Þ

where B ¼ 12 1�að Þþ3ah2=r2b c
16r 1�að Þþ2ah3=r2 , a ¼ Epl;x

Eel;x
, the ratio of the longitudinal plastic

modulus to the longitudinal elastic modulus of the adherend, and r is
the distance to the neutral axis from the location of the onset of
yielding in the adherend, which can be found by solving the following
polynomial equation:

syp;x
h2

2
1 � að Þ þ 1

12

a
r

h3 � 1

3
r2 1 � að Þ

� �
� M ¼ 0 ðA5Þ

Case 2

The calculation of shear stress txy due to tension requires a known sx

distribution across the section resulting from the tensile force T.
However, due to the nature of the bilinear adherend material property,
it is very complicated to obtain the exact distribution of sx. Therefore,
an assumption of uniform distribution is applied here, which leads to
an average shear stress given by

tneutral ¼ taverage ¼
1

h

Z h=2

�h=2

txy dy ¼ 1

2
ta ðA6Þ

where ta is the shear stress of the adherend at the adhesive interface.

FIGURE A1 Superposition of shear stress and strain in adherends.
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